An analysis of the regulation of DNA synthesis by cdk2, Cip1, and licensing factor
نویسندگان
چکیده
The activation of DNA replication appears to involve at least four steps. These include origin recognition, origin unwinding, primer synthesis, and a switching step to a continuous elongation mode. Moreover, in higher eukaryotes a number of studies have shown that much of the DNA replication which occurs is restricted to specific sites within the nuclei. It has been proposed that these replication foci are composed of a large number of origin sites which are clustered together into an aggregate. The molecular basis for this aggregation is currently not well understood. Regulation of the activation of DNA replication is a complicated process. The G1-S kinase cdk2 is a positive regulator of replication. The p21 protein is a negative regulator of replication both by inhibiting cdk2 kinase and the replication protein PCNA. Moreover, it has been proposed that origin usage is restricted to a single firing per cell cycle by a "licensing factor." Using a cell-free replication system derived from Xenopus eggs we have investigated at what step in the replication process these regulators participate. We present evidence that the clustered organization of DNA into foci is not a transient arrangement, but rather, it persists following DNA replication. We also find that foci form on both sperm chromatin and bacteriophage lambda DNA incubated in extracts depleted of cdk2 kinase. Therefore, our data support the conclusion that organization of chromatin into foci is an early event in the replication pathway preceding activation of cdk2 kinase. With respect to the role of cdk2 during activation of DNA replication we find that in cdk2-depleted extracts primer synthesis does not occur and RP-A remains tightly associated with foci. This strongly suggests that cdk2 kinase is required for activating the origin unwinding step of the replication process. Consistent with this interpretation we find that addition of rate limiting quantities of the cdk2 inhibitor p21 protein to an extract delays primer synthesis. Interestingly, in the presence of p21 primer synthesis does occur after a delay and then replication arrests. This is consistent with the published demonstration that p21 can inhibit PCNA, a protein required for replication beyond the priming step. Therefore, our results provide additional support to the proposal that the post-priming switching step is a key regulatory step in replication. With respect to the role of licensing factor during DNA replication it has recently been shown that treatment of mitotic extracts with kinase inhibitor DMAP inactivates "licensing factor."(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
The cyclin-dependent kinase inhibitor Dacapo promotes replication licensing during Drosophila endocycles.
The endocycle is a developmentally programmed variant cell cycle in which cells undergo repeated rounds of DNA replication with no intervening mitosis. In Drosophila, the endocycle is driven by the oscillations of Cyclin E/Cdk2 activity. How the periodicity of Cyclin E/Cdk2 activity is achieved during endocycles is poorly understood. Here, we demonstrate that the p21(cip1)/p27(kip1)/p57(kip2)-l...
متن کاملCUL4B promotes replication licensing by up-regulating the CDK2–CDC6 cascade
Cullin-RING ubiquitin ligases (CRLs) participate in the regulation of diverse cellular processes including cell cycle progression. Mutations in the X-linked CUL4B, a member of the cullin family, cause mental retardation and other developmental abnormalities in humans. Cells that are deficient in CUL4B are severely selected against in vivo in heterozygotes. Here we report a role of CUL4B in the ...
متن کاملEfficient down-regulation of cyclin A-associated activity and expression in suspended primary keratinocytes requires p21(Cip1).
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspe...
متن کاملMifepristone inhibits ovarian cancer cell growth in vitro and in vivo.
PURPOSE These studies were designed to determine whether the synthetic steroid mifepristone inhibits ovarian cancer growth in vitro and in vivo and the molecular mechanisms involved. EXPERIMENTAL DESIGN The effect of mifepristone on ovarian cancer cell growth in vitro was studied in ovarian cancer cell lines of different genetic backgrounds (SK-OV-3, Caov-3, OV2008, and IGROV-1). In addition,...
متن کاملDNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway.
Activation of the G(1) checkpoint following DNA damage leads to inhibition of cyclin E-Cdk2 and subsequent G(1) arrest in higher eucaryotes. Little, however, is known about the molecular events downstream of cyclin E-Cdk2 inhibition. Here we show that, in addition to the inhibition of DNA synthesis, ionizing radiation induces downregulation of histone mRNA levels in mammalian cells. This downre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 129 شماره
صفحات -
تاریخ انتشار 1995